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The Future of Artificial Intelligence 

If you use technology today, a smartphone, a computer, or any connected electronic 
device, then you are bound to be using artificial intelligence as part of the 
embedded software of that technology. Here are just a few commonplace examples: 

• Google search
• Voice recognition (Siri, Alexa, Cortana, again Google)
• Netflix or Amazon predictive analytics as to purchases
• Navigation apps like Waze (owned by Google), Google Maps, MapQuest (yes,

remember this one?)
• Modern video games: Super Mario Bros., NBA 2K (my son's favorite), Call of

Duty, etc.
• Fraud detection
• Translation software

Behind all of this technology is a complex set of algorithms, central processing units 
(CPUs), and computer servers with increasing levels of sophistication that are 
designed to accelerate that input and output of information, increasing the quality, 
complexity, and volume of interactions with our devices, and enhance our quality of 
life. 

We are already living in the world of AI. Read the resources below in order to engage 
the past, present, and future of this world from a variety of perspectives. 

So, what comes next? Where are we headed with AI, and what level of responsibility do the designers and providers 
have with managing AI technology? Will we control AI technology or will it control us? How do we handle the economic 
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ramifications that are likely to be added to the existing stresses in our local, national, and global communities? 

To come back to the title of this edition of Nexus, can we make AI, robots, etc. into the useful tools we intend them to 
be, with mensch-like attributes; or will it be a Golom that will rage beyond our control? I very much look forward to our 
community discussion on this topic. 

Andrew Boyarski
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Curated Sources 

The Basics: What is AI? 

What’s the Difference between Artificial Intelligence, Machine Learning, and Deep Learning? 
Michael Copeland, Nvidia Blog 

Artificial intelligence is the future. Artificial intelligence is science fiction. Artificial intelligence is already part of our 
everyday lives. All those statements are true, it just depends on what flavor of AI you are referring to. 

For example, when Google DeepMind’s AlphaGo program defeated South Korean Master Lee Se-dol in the board game 
Go earlier this year, the terms AI, machine learning, and were used in the media to describe how DeepMind won. And all 
three are part of the reason why AlphaGo trounced Lee Se-Dol. But they are not the same things. 

The easiest way to think of their relationship is to visualize them as concentric circles with AI — the idea that came first 
— the largest, then machine learning — which blossomed later, and finally deep learning — which is driving today’s AI 
explosion —  fitting inside both. 

From Bust to Boom 

AI has been part of our imaginations and simmering in research labs since a handful of computer scientists rallied 
around the term at the Dartmouth Conferences in 1956 and birthed the field of AI. In the decades since, AI has 
alternately been heralded as the key to our civilization’s brightest future, and tossed on technology’s trash heap as a 
harebrained notion of over-reaching propeller heads. Frankly, until 2012, it was a bit of both. 

Over the past few years AI has exploded, and especially since 2015. Much of that has to do with the wide availability 
of GPUs that make parallel processing ever faster, cheaper, and more powerful. It also has to do with the 
simultaneous one-two punch of practically infinite storage and a flood of data of every stripe (that whole Big Data 
movement) – images, text, transactions, mapping data, you name it. 

Let’s walk through how computer scientists have moved from something of a bust — until 2012 — to a boom that has 
unleashed applications used by hundreds of millions of people every day. 

Artificial Intelligence—Human Intelligence Exhibited by Machines 

King me: computer programs that played checkers were among the earliest examples of artificial intelligence, stirring an 
early wave of excitement in the 1950s. 

Back in that summer of ’56 conference the dream of those AI pioneers was to construct complex machines — enabled 
by emerging computers — that possessed the same characteristics of human intelligence. This is the concept we think 
of as “General AI” — fabulous machines that have all our senses (maybe even more), all our reason, and think just like 
we do. You’ve seen these machines endlessly in movies as friend — C-3PO — and foe — The Terminator. General AI 
machines have remained in the movies and science fiction novels for good reason; we can’t pull it off, at least not yet. 
What we can do falls into the concept of “Narrow AI.” Technologies that are able to perform specific tasks as well as, or 
better than, we humans can. Examples of narrow AI are things such as image classification on a service like Pinterest 
and face recognition on Facebook. 

Those are examples of Narrow AI in practice. These technologies exhibit some facets of human intelligence. But how? 
Where does that intelligence come from? That get us to the next circle, Machine Learning. 
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Machine Learning—An Approach to Achieve Artificial Intelligence 

 

Spam free diet: machine learning helps keep your inbox (relatively) free of spam. 

Machine learning at its most basic is the practice of using algorithms to parse data, learn from it, and then make a 
determination or prediction about something in the world. So rather than hand-coding software routines with a specific 
set of instructions to accomplish a particular task, the machine is “trained” using large amounts of data and algorithms 
that give it the ability to learn how to perform the task. 

Machine learning came directly from minds of the early AI crowd, and the algorithmic approaches over the years 
included decision tree learning, inductive logic programming, clustering, reinforcement learning, and Bayesian networks 
among others. As we know, none achieved the ultimate goal of General AI, and even Narrow AI was mostly out of reach 
with early machine learning approaches. 

As it turned out, one of the very best application areas for machine learning for many years was computer vision, though 
it still required a great deal of hand-coding to get the job done. People would go in and write hand-coded classifiers like 
edge detection filters so the program could identify where an object started and stopped; shape detection to determine 
if it had eight sides; a classifier to recognize the letters “S-T-O-P.” From all those hand-coded classifiers they would 
develop algorithms to make sense of the image and “learn” to determine whether it was a stop sign. 

Good, but not mind-bendingly great. Especially on a foggy day when the sign isn’t perfectly visible, or a tree obscures 
part of it. There’s a reason computer vision and image detection didn’t come close to rivaling humans until very recently, 
it was too brittle and too prone to error. Time, and the right learning algorithms made all the difference. 

 
Deep Learning — A Technique for Implementing Machine Learning 
Herding cats: Picking images of cats out of YouTube videos was one of the first breakthrough demonstrations of deep 
learning. 

Another algorithmic approach from the early machine-learning crowd, Artificial Neural Networks, came and mostly went 
over the decades. Neural Networks are inspired by our understanding of the biology of our brains – all those 
interconnections between the neurons. But, unlike a biological brain where any neuron can connect to any other neuron 
within a certain physical distance, these artificial neural networks have discrete layers, connections, and directions of 
data propagation. 

 

You might, for example, take an image, chop it up into a bunch of tiles that are inputted into the first layer of the neural 
network. In the first layer individual neurons, then passes the data to a second layer. The second layer of neurons does 
its task, and so on, until the final layer and the final output is produced. 

Each neuron assigns a weighting to its input — how correct or incorrect it is relative to the task being performed. The 
final output is then determined by the total of those weightings. So think of our stop sign example. Attributes of a stop 
sign image are chopped up and “examined” by the neurons — its octagonal shape, its fire-engine red color, its 
distinctive letters, its traffic-sign size, and its motion or lack thereof. The neural network’s task is to conclude whether 
this is a stop sign or not. It comes up with a “probability vector,” really a highly educated guess, based on the weighting. 
In our example the system might be 86% confident the image is a stop sign, 7% confident it’s a speed limit sign, and 5% 
it’s a kite stuck in a tree, and so on — and the network architecture then tells the neural network whether it is right or 
not. 

Even this example is getting ahead of itself, because until recently neural networks were all but shunned by the AI 
research community. They had been around since the earliest days of AI, and had produced very little in the way of 
“intelligence.” The problem was even the most basic neural networks were very computationally intensive, it just wasn’t 
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a practical approach. Still, a small heretical research group led by Geoffrey Hinton at the University of Toronto kept at it, 
finally parallelizing the algorithms for supercomputers to run and proving the concept, but it wasn’t until GPUs were 
deployed in the effort that the promise was realized. 

If we go back again to our stop sign example, chances are very good that as the network is getting tuned or “trained” 
it’s coming up with wrong answers —  a lot. What it needs is training. It needs to see hundreds of thousands, even 
millions of images, until the weightings of the neuron inputs are tuned so precisely that it gets the answer right 
practically every time — fog or no fog, sun or rain. It’s at that point that the neural network has taught itself what a stop 
sign looks like; or your mother’s face in the case of Facebook; or a cat, which is what Andrew Ng did in 2012 at Google. 

Ng’s breakthrough was to take these neural networks, and essentially make them huge, increase the layers and the 
neurons, and then run massive amounts of data through the system to train it. In Ng’s case it was images from 10 million 
YouTube videos. Ng put the “deep” in deep learning, which describes all the layers in these neural networks. 

Today, image recognition by machines trained via deep learning in some scenarios is better than humans, and that 
ranges from cats to identifying indicators for cancer in blood and tumors in MRI scans. Google’s AlphaGo learned the 
game, and trained for its Go match — it tuned its neural network — by playing against itself over and over and over. 

 
Thanks to Deep Learning, AI Has a Bright Future 

 

Deep Learning has enabled many practical applications of Machine Learning and by extension the overall field of AI. 
Deep Learning breaks down tasks in ways that makes all kinds of machine assists seem possible, even likely. Driverless 
cars, better preventive healthcare, even better movie recommendations, are all here today or on the horizon. AI is the 
present and the future. With Deep Learning’s help, AI may even get to that science fiction state we’ve so long imagined. 
You have a C-3PO, I’ll take it. You can keep your Terminator. 
 

Next Steps: How is AI Impacting Society? 
 

Rabbinic Artificial Intelligence? Babylonian Talmud; Sanhedrin 65b 

Rava says: If the righteous wish to do so, they can create a world, as it is stated: “But your iniquities have 
separated between you and your God.” In other words, there is no distinction between God and a righteous person who 
has no sins, and just as God created the world, so can the righteous. 

Indeed, Rava created a man, a golem, using forces of sanctity. Rava sent his creation before Rabbi Zeira. Rabbi 
Zeira would speak to him but he would not reply. Rabbi Zeira said to him: You were created by one of the members 
of the group, one of the Sages. Return to your dust. 

 
How Judaism Predicted the First Humanoid Robot, Mark Goldfeder, CNN 

(CNN) - To the team of researchers, Eugene Goostman seemed like a nice Jewish boy from Odessa, Ukraine. 

In fact, he was a computer. 

In convincing some of the researchers that Goostman was real, the computer program became the first to pass the Turing 
Test for artificial intelligence. The Turing Test, named for British mathematician Alan Turing, is often thought of as the 
benchmark test for true machine intelligence. Since 1950, thousands of scientific teams have tried to create something 
capable of passing, but none has succeeded. That is, until Saturday – and, appropriately for the Goostman advance, our 
brave new world can learn a bit from Jewish history. 
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As we start to think about whether to grant human-like beings special status, Judaism’s highly developed ethical sense, 
with its willing over-inclusiveness, is not a bad model to follow. What makes this so fascinating is that long ago Judaism 
came up with a test for humanity that was quite similar to the Turing Test. Jewish law ascribes to and develops several 
“descriptive” tests for humanity - for instance "born of woman" (that is, a biological test). But it also recognizes the 
limitations of letting a technicality be the only definition of moral personhood. 

If there was a creature that looked human, and acted human, but was somehow not born of woman, Jewish law would 
not feel comfortable denying its basic human rights. And so the Jerusalem Talmud developed a secondary test for 
humanity, a contextual/functional test. In the fourth century collection of teachings, rabbis argue that if something looks 
human and acts human enough that when interacting with it we are not sure, the creature should be considered a 
person, at least for some things. Having human features is important under Jewish law because Judaism believes that 
man is created in the image of God. 

But what exactly does it mean to act human? 

Many of the early biblical commentators say that what separates man from animals is the ability to speak - not only to 
communicate but also to express some level of moral intelligence. While the early rabbis obviously didn’t have bots or 
computer programs, they did deal with creatures that were human-ish, if not human.  

Famously, the rabbis give partial human status to something called a yadua. While the rabbinic descriptions are terse, the 
creature seems something like Bigfoot; a giant man-like animal usually spotted in the field. Maimonides, in describing 
these creatures, notes that their speech is similar to humans, but is unintelligible. The famous Jewish scholar refers to the 
creatures in his commentary as monkeys. But he doesn't dispute the Talmudic teaching that in some cases yadua can be 
considered persons. After all, so the argument goes, the yadua looks (somewhat) like a human, and exhibits a level of 
intelligence that makes it seem, in some ways human. Therefore it deserves to be treated like a human for some things, 
even though it fails the biological test of being born of a woman. 

Simply put: The rule is that if something looks and acts human in a particular context, to the point that it seems like a 
person, do not start poking it to see if it bleeds. Just go ahead and treat it like a person. 

Where then, does that leave computers, or more specifically, human-like robots? 

What if Eugene Goostman had been put into a life-like robotic body that had some human features? 

The golem in Jewish lore is typically depicted as a man-shaped creature made of clay, imbued with a sense of life by 
means of a specific series of letters programmed into it by a specialist. It is quite similar, in fact, to the robot: a man-
shaped creature made of metal, imbued with a sense of life by means of a very specific series of numbers programmed 
into it by a specialist. Interestingly, the term “robot” (from the Czech word “robota” meaning “drudgery” or “hard work”) 
was invented by the Czech novelist and playwright Karel Capek. Capek lived in Prague, and was well acquainted with the 
well-known legend of the Golem of Prague. Golems are usually associated with kabbalah (Jewish mysticism), but not 
always. 

Lest you think that golems are not a good analogy for robots because of a special supernatural status, some influential 
Jewish scholars claim that the most famous golem was created by natural science and was not magic at all. The Talmud in 
Sanhedrin tells the story of how one rabbi created an artificial man and sent him to a colleague.  

“Rava created a man and sent him to Rabbi Zeira. The rabbi spoke to the man but he did not answer. Then he (Zeira) said: 
"You are from my colleagues. Return to your dust.” Why was Zeira allowed to dismantle Rava's golem, i.e. to return it to 
its dust? Why was this not considered murder? Because he talked to it, and it could not answer. That is, it could not pass 
for human. Which leaves open the possibility that another, better, golem, perhaps a 13-year-old boy from Odessa, given 
the proper outfit, might have fared better. 
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The Robot Revolution Will Be the Quietest One, Liu Cixin, The New York Times 

Turning Point: Though the first fatal crash involving an autonomous car took place in July 2016, self-driving vehicles have 
been adopted around the world. 

In 2016, self-driving cars made inroads in several countries, many of which rewrote their laws to accommodate the new 
technology. As a science-fiction writer, it’s my duty to warn the human race that the robot revolution has begun — even 
if no one has noticed yet. 

When a few autonomous test cars appeared on the roads over the last few years, we didn’t think of them as robots 
because they didn’t have the humanoid shape that science-fiction movies taught us to expect. In 2016, they were 
adopted widely: as buses in the United Arab Emirates and the Netherlands, taxis in Singapore and private cars in the 
United States and China. There was a fatal accident in Florida involving an autonomous car, which caused some 
concerns, but this did not significantly affect our embrace of this technology. 

Instead of arming ourselves against this alien presence, as some of my fellow science-fiction writers have fearfully 
suggested, we gawked as the vehicles pulled up to the curb. The driverless vehicles, some of which had no steering 
wheels or gas pedals, merged into traffic and stopped at stop signs, smoothly taking us to our destinations. We lounged 
in comfort, occasionally taking selfies. 

Machine learning has been an important tool for autonomous car companies as they develop the systems that pilot 
their vehicles. Instead of rigidly following programming as an app on your phone does, an A.I. system can try to learn to 
do a task itself, using techniques borrowed from human learning, like pattern recognition and trial and error, and may 
use hardware modeled on the architecture of a human brain. Currently, the responsibilities of artificial intelligence are 
mostly limited to tasks like translating texts, helping with medical diagnoses and writing simple articles for media 
companies. But we can expect to see unimaginable progress in this field in future — and the widespread use of the 
autonomous car is going to accelerate that process as automobile and technology companies invest ever more 
resources in its development. 

Let’s try to envision that future. As during every other technological revolution, the robots will first transform our 
economy. People who drive for a living will lose their jobs — around 3 million in the United States alone. E-commerce 
may experience further booms because of automation, and car ownership is likely to become nearly obsolete as more 
targeted car sharing and public transportation systems are developed. Eventually, the robot cars could be integrated 
with other transportation systems. Say that you live in New York City and want to go to China’s Henan Province: You will 
enter the address into an app, a car will take you to your plane at the airport, and after you land, another will take you 
directly to your destination. 

Robots will begin to creep into other areas of our lives — serving as busboys or waiters, for example — as our 
investments in robotic transport improve their prowess in areas such as environmental detection and modeling, hyper- 
complex problem solving and fuzzy-logic applications. With every advance, the use of A.I.-powered robots will expand 
into other fields: health care, policing, national defense and education. 

There will be scandals when things go wrong and backlash movements from the new Luddites. But I don’t think we’ll 
protest very much. The A.I. systems that drive our cars will teach us to trust machine intelligence over the human variety 
— car accidents will become very rare, for example — and when given an opportunity to delegate a job to a robot, we 
will placidly do so without giving it much thought. 

In all previous technological revolutions, people who lost their jobs mostly moved to new ones, but that will be less likely 
when the robots take over. A.I. that can learn from experience will replace many accountants, lawyers, bankers, 
insurance adjusters, doctors, scientific researchers and some creative professionals. Intelligence and advanced training 
will no longer mean job stability. 
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Gradually the A.I. era will transform the essence of human culture. When we’re no longer more intelligent than our 
machines, when they can easily outthink and outperform us, making the sort of intuitive leaps in research and other 
areas that we currently associate with genius, a sort of learned helplessness is likely to set in for us, and the idea of work 
itself may cease to hold meaning. 

As A.I. takes over, the remaining jobs may dwindle to a fraction of what they were, employing perhaps 10 percent or 
even less of the total population. These may be highly creative or complex jobs that robots can’t do, such as senior 
management, directing scientific research or nursing and child care. 

In the dystopian scenario, as jobless numbers rise across the globe, our societies sink into prolonged turmoil. The world 
could be engulfed by endless conflicts between those who control the A.I. and the rest of us. The technocratic 10 
percent could end up living in a gated community with armed robot guards. 

There is a second, utopian scenario, where we’ve anticipated these changes and come up with solutions beforehand. 
Those in political power have planned a smoother, gentler transition, perhaps using A.I. to help them anticipate and 
modulate the strife. At the end of it, almost all of us live on social welfare 

How we will spend our time is hard to predict. “He who does not work, neither shall he eat” has been the cornerstone of 
civilizations through the ages, but that will have vanished. History shows that those who haven’t had to work — 
aristocrats, say — have often spent their time entertaining and developing their artistic and sporting talents while 
scrupulously observing elaborate rituals of dress and manners. 

In this future, creativity is highly valued. We sport ever more fantastic makeup, hairstyles and clothing. The labor of past 
ages seems barbaric. 

But the aristocrats ruled nations; in the A.I. era, machines are doing all the thinking. Because, over the decades, we’ve 
gradually given up our autonomy, step by step, allowing ourselves to be transformed into A.I.’s docile, fabulously 
pampered pets. As A.I. whisks us from place to place — visits to family members, art galleries and musical events — we 
will look out the windows, as unaware of its plans for us as a poodle on its way to the groomer’s. 

 
This isn’t crying wolf: Machines will take white-collar jobs during the next administration, Martin Ford, Linkedin 

 
In this series, professionals provide advice for the next U.S. president. What do you want POTUS focused on? 

 
Dear Madam / Mr. President: 

 
Over fifty years ago, in March 1964, a document known as the “Triple Revolution Report” landed on the desk of your 
predecessor, Lyndon Johnson. That report, written by a prominent group of intellectuals that included two Nobel 
laureates, argued that the United States was on the brink of dramatic social and economic disruption as rapidly 
advancing industrial automation technology was poised to throw millions out of work. 

Needless to say, that dire prediction did not come to pass. However, there are good reasons to believe that technology 
has finally advanced to the point where such concerns need to be taken seriously. The fear that machines might 
displace workers and create unemployment has a long history, and because the alarm has been prematurely sounded so 
many times in the past, there is a real danger that a “little boy who cried wolf” effect will leave us complacent and 
unprepared if and when the disruption finally arrives. 

Recent advances in artificial intelligence and robotics suggest that it is entirely possible that a significant impact on the 
job market could begin to unfold during the course of your presidency. The most important thing to understand about all 
this progress is that computers no longer have to be programmed step-by-step. Machine learning—a technology that 
involves smart algorithms churning through vast amounts of data—in effect allows computers figure out for themselves 
how to perform tasks or reach specific goals. 
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The recent triumph of Google’s DeepMind technology at learning to play the ancient game of “Go” and then triumphing 
against one of the world’s best players was an especially vivid demonstration of the technology, but, in fact, machine 
learning is already in widespread use across both industries and occupations. Smart algorithms have already displaced 
lawyers and paralegals who once reviewed documents as part of the legal discovery process. An increasing number of 
news articles published my major U.S. media companies are being generated autonomously by systems that analyze data 
and create content that is often indistinguishable from a story written by a human journalist. Machine learning is also 
powering the latest generation of robots, and the machines are rapidly becoming more flexible and dexterous. 

As technology continues to accelerate, the number and types of jobs that can be automated is certain to expand 
dramatically. It's not just factory workers that can be replaced by robots and machines: Rapidly improving software 
automation and specialized artificial intelligence applications will make knowledge worker and professional occupations 
requiring college educations and advanced skills increasingly vulnerable. This demonstrated capability for information 
technology to climb the skills ladder and threaten the jobs taken by college graduates is a special cause for concern 
because it calls into question the only conventional solution we have to offer workers displaced by automation: ever 
more training and education. 

If technology eventually results in wide-spread unemployment, or if it drives down wages for the majority of workers as 
jobs are deskilled and commoditized, then we could also run into a serious problem with consumer demand. Jobs are 
the primary mechanism that gets purchasing power into the hands of consumers so that they buy the products and 
services generated by the economy. If automation has a negative impact on consumer demand and confidence, then we 
run the risk of economic stagnation or even a downward, deflationary spiral. 

While these concerns may seem either far-fetched science fiction or a return to the Ludditism we’ve experienced in the 
past, many of us in the technology community believe the risk is real--and that it deserves serious consideration. At a 
time when our political system is intensely polarized and seems unable to respond to even the most mundane 
challenges, the prospect of a dramatic and unanticipated economic and social disruption is not sometime we can afford 
to take lightly. 

If the automation of jobs proves to be a relentless trend, then there will eventually be no alternative but to consider 
unconventional solutions--perhaps including a guaranteed basic income for all Americans. Needless to say, the 
implementation of such policies would present a staggering political challenge. Given that there is no reliable way to 
predict when the disruption will occur, or how fast it will unfold, it is imperative that planning begin well in advance. A 
logical first step would be to initiate some experimental pilot programs designed to test various policy responses. The 
data generated by these programs would be invaluable in eventually crafting an effective national policy to adapt our 
economy and society to the implications of disruptive technology. 

I urge you to consider including among those who staff your new administration experts who are familiar with recent 
advances in artificial intelligence and robotics and with the potential economic and social impact of these technologies, 
and who are prepared to initiate the planning process. 
 
The Hype—and Hope—of Artificial Intelligence, Om Malik, The New Yorker 

Earlier this month, on his HBO show “Last Week Tonight,” John Oliver skewered media companies’ desperate search for 
clicks. Like many of his bits, it became a viral phenomenon, clocking in at nearly six million views on YouTube. At around 
the ten-minute mark, Oliver took his verbal bat to the knees of Tronc, the new name for Tribune Publishing Company, 
and its parody-worthy promotional video, in which a robotic spokeswoman describes the journalistic benefits of artificial 
intelligence, as a string section swells underneath. 

Tronc is not the only company to enthusiastically embrace the term “artificial intelligence.” A.I. is hot, and every 
company worth its stock price is talking about how this magical potion will change everything. Even Macy’s recently 
announced that it was testing an I.B.M. artificial-intelligence tool in ten of its department stores, in order to bring back 
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customers who are abandoning traditional retail in favor of online shopping. 

Much like “the cloud,” “big data,” and “machine learning” before it, the term “artificial intelligence” has been hijacked 
by marketers and advertising copywriters. A lot of what people are calling “artificial intelligence” is really data 
analytics—in other words, business as usual. If the hype leaves you asking “What is A.I., really?,” don’t worry, you’re not 
alone. I asked various experts to define the term and got different answers. The only thing they all seem to agree on is 
that artificial intelligence is a set of technologies that try to imitate or augment human intelligence. To me, the 
emphasis is on augmentation, in which intelligent software helps us interact and deal with the increasingly digital world 
we live in. 

Three decades ago, I read newspapers, wrote on an electric typewriter, and watched a handful of television channels. 
Today, I have streaming video from Netflix, Amazon, HBO, and other places, and I’m sometimes paralyzed by the 
choices. It is becoming harder for us to stay on top of the onslaught—e-mails, messages, appointments, alerts. 
Augmented intelligence offers the possibility of winnowing an increasing number of inputs and options in a way that 
humans can’t manage without a helping hand. 

Computers in general, and software in particular, are much more difficult than other kinds of technology for most 
people to grok, and they overwhelm us with a sense of mystery. There was a time when you would record a letter or a 
document on a dictaphone and someone would transcribe it for you. A human was making the voice-to-text conversion 
with the help of a machine. Today, you can speak into your iPhone and it will transcribe your messages itself. If people 
could have seen our current voice-to-text capabilities fifty years ago, it would have looked as if technology had become 
sentient. Now it’s just a routine way to augment how we interact with the world. Kevin Kelly, the writer and futurist, 
whose most recent book is “The Inevitable: Understanding the 12 Technological Forces That Will Shape Our Future,” 
said, “What we can do now would be A.I. fifty years ago. What we can do in fifty years will not be called A.I.” 

You don’t have to look up from Facebook to get his point. Before we had the Internet, we would either call or write to 
our friends, one at a time, and keep up with their lives. It was a slow process, and took a lot of effort and time to learn 
about each other. As a result, we had fewer interactions—there was a cost attached to making long-distance phone 
calls and a time commitment attached to writing letters. With the advent of the Internet, e-mail emerged as a way to 
facilitate and speed up those interactions. Facebook did one better—it turned your address book into a hub, allowing 
you to simultaneously stay in touch with hundreds, even thousands, of friends. The algorithm allows us to maintain 
more relationships with much less effort at almost no cost. 
Michelle Zhou spent over a decade and a half at I.B.M. Research and I.B.M. Watson Group before leaving to become a 
co-founder of Juji, a sentiment-analysis startup. An expert in a field where artificial intelligence and human-computer 
interaction intersect, Zhou breaks down A.I. into three stages. The first is recognition intelligence, in which algorithms 
running on ever more powerful computers can recognize patterns and glean topics from blocks of text, or perhaps even 
derive the meaning of a whole document from a few sentences. The second stage is cognitive intelligence, in which 
machines can go beyond pattern recognition and start making inferences from data. The third stage will be reached 
only when we can create virtual human beings, who can think, act, and behave as humans do. 

We are a long way from creating virtual human beings. Despite what you read in the media, no technology is perfect, 
and the most valuable function of A.I. lies in augmenting human intelligence. To even reach that point, we need to train 
computers to mimic humans. An April, 2016, story in Bloomberg Business provided a good example. It described how 
companies that provide automated A.I. personal assistants (of the sort that arrange schedules or help with online 
shopping) had hired human “trainers” to check and evaluate the A.I. assistants’ responses before they were sent 
out. “It’s ironic that we define artificial intelligence with respect to its ability to replicate human intelligence,” said Sean 
Gourley, the founder of Primer, a data-analytics company, and an expert on deriving intelligence from large data sets 
with the help of algorithms. 

Whether it is Spotify or Netflix or a new generation of A.I. chat bots, all of these tools rely on humans themselves to 
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provide the data. When we listen to songs, put them on playlists, and share them with others, we are sending vital 
signals to Spotify that train its algorithms not only to discover what we might like but also to predict hits. 

Even the much talked-about “computer vision” has become effective only because humans have uploaded billions of 
photos and tagged them with metadata to give those photos context. Increasingly powerful computers can scan through 
these photos and find patterns and meaning. Similarly, Google can use billions of voice samples it has collected over the 
years to build a smart system that understands accents and nuances, which make its voice-based search function 
possible. 

Using Zhou’s three stages as a yardstick, we are only in the “recognition intelligence” phase—today’s computers use 
deep learning to discover patterns faster and better. It’s true, however, that some companies are working on 
technologies that can be used for inferring meanings, which would be the next step. “It does not matter whether we will 
end up at stage 3,” Zhou wrote to me in an e-mail. “I’m still a big fan of man-machine symbiosis, where computers do 
the best they can (that is being consistent, objective, precise), and humans do our best (creative, imprecise but 
adaptive).” For a few more decades, at least, humans will continue to train computers to mimic us. And, in the 
meantime, we’re going to have to deal with the hyperbole surrounding A.I. 

 
Deep Dive: What are the Next Frontiers and Further Implications of AI? 
 
DeepMind and Blizzard Open StarCraft II as an AI Research Environment, Oriyal VInyals, Stephen Gaffney, Timo Ewalds; 
DeepMind 

DeepMind's scientific mission is to push the boundaries of AI by developing systems that can learn to solve 
complex problems. To do this, we design agents and test their ability in a wide range of environments from the 
purpose- built DeepMind Lab to established games, such as Atari and Go. 

Testing our agents in games that are not specifically designed for AI research, and where humans play well, is crucial 
to benchmark agent performance. That is why we, along with our partner Blizzard Entertainment, are excited to 
announce the release of SC2LE, a set of tools that we hope will accelerate AI research in the real-time strategy game 
StarCraft II. The SC2LE release includes: 

A Machine Learning API developed by Blizzard that gives researchers and developers hooks into the game. This 
includes the release of tools for Linux for the first time. 

A dataset of anonymised game replays, which will increase from 65k to more than half a million in the coming weeks. 

An open source version of DeepMind’s toolset, PySC2, to allow researchers to easily use Blizzard’s feature-layer API 
with their agents. 

A series of simple RL mini-games to allow researchers to test the performance of agents on specific tasks. 

A joint paper that outlines the environment, and reports initial baseline results on the mini-games, supervised 
learning from replays, and the full 1v1 ladder game against the built-in AI. 

StarCraft and StarCraft II are among the biggest and most successful games of all time, with players competing in 
tournaments for more than 20 years. The original game is also already used by AI and ML researchers, who compete 
annually in the AIIDE bot competition. Part of StarCraft’s longevity is down to the rich, multi-layered gameplay, which 
also makes it an ideal environment for AI research. 

For example, while the objective of the game is to beat the opponent, the player must also carry out and balance a 
number of sub-goals, such as gathering resources or building structures. In addition, a game can take from a few 
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minutes to one hour to complete, meaning actions taken early in the game may not pay-off for a long time. Finally, 
the map is only partially observed, meaning agents must use a combination of memory and planning to succeed. 

The game also has other qualities that appeal to researchers, such as the large pool of avid players that compete 
online every day. This ensures that there is a large quantity of replay data to learn from - as well as a large quantity 
of extremely talented opponents for AI agents. 

Even StarCraft’s action space presents a challenge with a choice of more than 300 basic actions that can be 
taken. Contrast this with Atari games, which only have about 10 (e.g. up, down, left, right etc). On top of this, 
actions in StarCraft are hierarchical, can be modified and augmented, with many of them requiring a point on the 
screen. Even assuming a small screen size of 84x84 there are roughly 100 million possible actions available. 
This release means researchers can now tackle some of these challenges using Blizzard’s own tools to build their own 
tasks and models. 

Our PySC2 environment wrapper helps by offering a flexible and easy-to-use interface for RL agents to play the game. In 
this initial release, we break the game down into “feature layers”, where elements of the game such as unit type, health 
and map visibility are isolated from each other, whilst preserving the core visual and spatial elements of the game. 

 
The release also contains a series of ‘mini-games’ - an established technique for breaking down the game into 
manageable chunks that can be used to test agents on specific tasks, such as moving the camera, collecting mineral 
shards or selecting units. We hope that researchers can test their techniques on these as well as propose new mini- 
games for other researchers to compete and evaluate on. 
 
Our initial investigations show that our agents perform well on these mini-games. But when it comes to the full game, 
even strong baseline agents, such as A3C, cannot win a single game against even the easiest built-in AI. For instance, the 
following video shows an early-stage training agent (left) which fails to keep its workers mining, a task that humans find 
trivial. After training (right), the agents perform more meaningful actions, but if they are to be competitive, we will 
need further breakthroughs in deep RL and related areas. 

One technique that we know allows our agents to learn stronger policies is imitation learning. This kind of training will 
soon be far easier thanks to Blizzard, which has committed to ongoing releases of hundreds of thousands of anonymized 
replays gathered from the StarCraft II ladder. These will not only allow researchers to train supervised agents to play  
the game, but also opens up other interesting areas of research such as sequence prediction and long-term memory. 

Our hope is that the release of these new tools will build on the work that the AI community has already done in 
StarCraft, encouraging more DeepRL research and making it easier for researchers to focus on the frontiers of our field. 

We look forward to seeing what the community discovers. 
 

Neuroscience-Inspired Artificial Intelligence, Demis Hassabis, Dharshan Kumaran, Christopher Summerfield, Matthew 
Botvinick; Neuron 

The fields of neuroscience and artificial intelligence (AI) have a long and intertwined history. In more recent times, 
however, communication and collaboration between the two fields has become less commonplace. In this article, we 
argue that better understanding biological brains could play a vital role in building intelligent machines. We survey 
historical interactions between the AI and neuroscience fields and emphasize current advances in AI that have been 
inspired by the study of neural computation in humans and other animals. We conclude by highlighting shared themes 
that may be key for advancing future research in both fields. 

In recent years, rapid progress has been made in the related fields of neuroscience and artificial intelligence (AI). At 
the dawn of the computer age, work on AI was inextricably intertwined with neuroscience and psychology, and many of 
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the early pioneers straddled both fields, with collaborations between these disciplines proving highly productive. 
(Churchland and Sejnowski, 1988, Hebb, 1949, Hinton et al., 1986, Hopfield, 1982, McCulloch and Pitts, 1943, Turing, 
1950). However, more recently, the interaction has become much less commonplace, as both subjects have grown 
enormously in complexity and disciplinary boundaries have solidified. In this review, we argue for the critical and 
ongoing importance of neuroscience in generating ideas that will accelerate and guide AI research (see Hassabis 
commentary in Brooks et al., 2012). 

We begin with the premise that building human-level general AI (or “Turing-powerful” intelligent systems; Turing, 1936) 
is a daunting task, because the search space of possible solutions is vast and likely only very sparsely populated. We 
argue that this therefore underscores the utility of scrutinizing the inner workings of the human brain— the only existing 
proof that such an intelligence is even possible. Studying animal cognition and its neural implementation also has a vital 
role to play, as it can provide a window into various important aspects of higher-level general intelligence. 

The benefits to developing AI of closely examining biological intelligence are two-fold. First, neuroscience provides a 
rich source of inspiration for new types of algorithms and architectures, independent of and complementary to the 
mathematical and logic-based methods and ideas that have largely dominated traditional approaches to AI. For 
example, were a new facet of biological computation found to be critical to supporting a cognitive function, then we 
would consider it an excellent candidate for incorporation into artificial systems. Second, neuroscience can 
provide validation of AI techniques that already exist. If a known algorithm is subsequently found to be implemented in 
the brain, then that is strong support for its plausibility as an integral component of an overall general intelligence 
system. Such clues can be critical to a long-term research program when determining where to allocate resources most 
productively. For example, if an algorithm is not quite attaining the level of performance required or expected, but we 
observe it is core to the functioning of the brain, then we can surmise that redoubled engineering efforts geared to 
making it work in artificial systems are likely to pay off. 

Of course from a practical standpoint of building an AI system, we need not slavishly enforce adherence to biological 
plausibility. From an engineering perspective, what works is ultimately all that matters. For our purposes then, 
biological plausibility is a guide, not a strict requirement. What we are interested in is a systems neuroscience-level 
understanding of the brain, namely the algorithms, architectures, functions, and representations it utilizes. This roughly 
corresponds to the top two levels of the three levels of analysis that Marr famously stated are required to understand 
any complex biological system (Marr and Poggio, 1976): the goals of the system (the computational level) and the 
process and computations that realize this goal (the algorithmic level). The precise mechanisms by which this is 
physically realized in a biological substrate are less relevant here (the implementation level). Note this is where our 
approach to neuroscience-inspired AI differs from other initiatives, such as the Blue Brain Project (Markram, 2006) or 
the field of neuromorphic computing systems (Esser et al., 2016), which attempt to closely mimic or directly reverse 
engineer the specifics of neural circuits (albeit with different goals in mind). By focusing on the computational and 
algorithmic levels, we gain transferrable insights into general mechanisms of brain function, while leaving room to 
accommodate the distinctive opportunities and challenges that arise when building intelligent machines in silico. 

The following sections unpack these points by considering the past, present, and future of the AI-neuroscience 
interface. Before beginning, we offer a clarification. Throughout this article, we employ the terms “neuroscience” and 
“AI.” We use these terms in the widest possible sense. When we say neuroscience, we mean to include all fields that are 
involved with the study of the brain, the behaviors that it generates, and the mechanisms by which it does so, including 
cognitive neuroscience, systems neuroscience and psychology. When we say AI, we mean work in machine learning, 
statistics, and AI research that aims to build intelligent machines (Legg and Hutter, 2007). 

We begin by considering the origins of two fields that are pivotal for current AI research, deep learning and 
reinforcement learning, both of which took root in ideas from neuroscience. We then turn to the current state of play 
in AI research, noting many cases where inspiration has been drawn (sometimes without explicit acknowledgment) 
from concepts and findings in neuroscience. In this section, we particularly emphasize instances where we have 



14 
YU Ideas - A Project of the Office of the President - Yeshiva University – yu.edu/yuideas  

combined deep learning with other approaches from across machine learning, such as reinforcement learning (Mnih et 
al., 2015), Monte Carlo tree search (Silver et al., 2016), or techniques involving an external content-addressable 
memory (Graves et al., 2016). Next, we consider the potential for neuroscience to support future AI research, looking at 
both the most likely research challenges and some emerging neuroscience-inspired AI techniques. While our main focus 
will be on the potential for neuroscience to benefit AI, our final section will briefly consider ways in which AI may be 
helpful to neuroscience and the broader potential for synergistic interactions between these two fields. 
 
The Past:  
 
Deep Learning 

As detailed in a number of recent reviews, AI has been revolutionized over the past few years by dramatic advances in 
neural network, or “deep learning,” methods (LeCun et al., 2015, Schmidhuber, 2014). As the moniker “neural network” 
might suggest, the origins of these AI methods lie directly in neuroscience. In the 1940s, investigations of neural 
computation began with the construction of artificial neural networks that could compute logical functions (McCulloch 
and Pitts, 1943). Not long after, others proposed mechanisms by which networks of neurons might learn incrementally 
via supervisory feedback (Rosenblatt, 1958) or efficiently encode environmental statistics in an unsupervised fashion 
(Hebb, 1949). These mechanisms opened up the field of artificial neural network research, and they continue to provide 
the foundation for contemporary research on deep learning (Schmidhuber, 2014). 

Not long after this pioneering work, the development of the backpropagation algorithm allowed learning to occur in 
networks composed of multiple layers (Rumelhart et al., 1985, Werbos, 1974). Notably, the implications of this method 
for understanding intelligence, including AI, were first appreciated by a group of neuroscientists and cognitive scientists, 
working under the banner of parallel distributed processing (PDP) (Rumelhart et al., 1986). At the time, most AI research 
was focused on building logical processing systems based on serial computation, an approach inspired in part by the 
notion that human intelligence involves manipulation of symbolic representations (Haugeland, 1985). However, there 
was a growing sense in some quarters that purely symbolic approaches might be too brittle and inflexible to solve 
complex real-world problems of the kind that humans routinely handle. Instead, a growing foundation of knowledge 
about the brain seemed to point in a very different direction, highlighting the role of stochastic and highly parallelized 
information processing. Building on this, the PDP movement proposed that human cognition and behavior emerge from 
dynamic, distributed interactions within networks of simple neuron-like processing units, interactions tuned by learning 
procedures that adjust system parameters in order to minimize error or maximize reward. 
Although the PDP approach was at first applied to relatively small-scale problems, it showed striking success in 
accounting for a wide range of human behaviors (Hinton et al., 1986). Along the way, PDP research introduced a diverse 
collection of ideas that have had a sustained influence on AI research. For example, current machine translation 
research exploits the notion that words and sentences can be represented in a distributed fashion (i.e., as vectors) 
(LeCun et al., 2015), a principle that was already ingrained in early PDP-inspired models of sentence processing (St. John 
and McClelland, 1990). Building on the PDP movement’s appeal to biological computation, current state-of-the- 
art convolutional neural networks (CNNs) incorporate several canonical hallmarks of neural computation, including 
nonlinear transduction, divisive normalization, and maximum-based pooling of inputs (Yamins and DiCarlo, 2016). These 
operations were directly inspired by single-cell recordings from the mammalian visual cortex that revealed how visual 
input is filtered and pooled in simple and complex cells in area V1 (Hubel and Wiesel, 1959). Moreover, current network 
architectures replicate the hierarchical organization of mammalian cortical systems, with both convergent and divergent 
information flow in successive, nested processing layers (Krizhevsky et al., 2012, LeCun et al., 1989, Riesenhuber and 
Poggio, 1999, Serre et al., 2007), following ideas first advanced in early neural network models of visual processing 
(Fukushima, 1980). In both biological and artificial systems, successive non-linear computations transform raw visual 
input into an increasingly complex set of features, permitting object recognition that is invariant to transformations of 
pose, illumination, or scale. 
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As the field of deep learning evolved out of PDP research into a core area within AI, it was bolstered by new ideas, such 
as the development of deep belief networks (Hinton et al., 2006) and the introduction of large datasets inspired by 
research on human language (Deng et al., 2009). During this period, it continued to draw key ideas from neuroscience. 
For example, biological considerations informed the development of successful regularization schemes that support 
generalization beyond training data. One such scheme, in which only a subset of units participate in the processing of a 
given training example (“dropout”), was motivated by the stochasticity that is inherent in biological systems populated 
by neurons that fire with Poisson-like statistics (Hinton et al., 2012). Here and elsewhere, neuroscience has provided 
initial guidance toward architectural and algorithmic constraints that lead to successful neural network applications for 
AI. 
 
Reinforcement Learning 

Alongside its important role in the development of deep learning, neuroscience was also instrumental in erecting a 
second pillar of contemporary AI, stimulating the emergence of the field of reinforcement learning (RL). RL methods 
address the problem of how to maximize future reward by mapping states in the environment to actions and are among 
the most widely used tools in AI research (Sutton and Barto, 1998). Although it is not widely appreciated among AI 
researchers, RL methods were originally inspired by research into animal learning. In particular, the development of 
temporal-difference (TD) methods, a critical component of many RL models, was inextricably intertwined with research 
into animal behavior in conditioning experiments. TD methods are real-time models that learn from differences 
between temporally successive predictions, rather than having to wait until the actual reward is delivered. Of particular 
relevance was an effect called second-order conditioning, where affective significance is conferred on a conditioned 
stimulus (CS) through association with another CS rather than directly via association with the unconditioned stimulus 
(Sutton and Barto, 1981). TD learning provides a natural explanation for second-order conditioning and indeed has gone 
on to explain a much wider range of findings from neuroscience, as we discuss below. 
Here, as in the case of deep learning, investigations initially inspired by observations from neuroscience led to further 
developments that have strongly shaped the direction of AI research. From their neuroscience-informed origins, TD 
methods and related techniques have gone on to supply the core technology for recent advances in AI, ranging from 
robotic control (Hafner and Riedmiller, 2011) to expert play in backgammon (Tesauro, 1995) and Go (Silver et al., 2016). 
 
The Present: 

Reading the contemporary AI literature, one gains the impression that the earlier engagement with neuroscience has 
diminished. However, if one scratches the surface, one can uncover many cases in which recent developments have 
been inspired and guided by neuroscientific considerations. Here, we look at four specific examples. 
 
Attention 

The brain does not learn by implementing a single, global optimization principle within a uniform and undifferentiated 
neural network (Marblestone et al., 2016). Rather, biological brains are modular, with distinct but interacting 
subsystems underpinning key functions such as memory, language, and cognitive control (Anderson et al., 2004, 
Shallice, 1988). This insight from neuroscience has been imported, often in an unspoken way, into many areas of current 
AI. 

One illustrative example is recent AI work on attention. Up until quite lately, most CNN models worked directly on entire 
images or video frames, with equal priority given to all image pixels at the earliest stage of processing. The primate 
visual system works differently. Rather than processing all input in parallel, visual attention shifts strategically among 
locations and objects, centering processing resources and representational coordinates on a series of regions in turn 
(Koch and Ullman, 1985, Moore and Zirnsak, 2017, Posner and Petersen, 1990). Detailed neurocomputational models 
have shown how this piecemeal approach benefits behavior, by prioritizing and isolating the information that is relevant 
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at any given moment (Olshausen et al., 1993, Salinas and Abbott, 1997). As such, attentional mechanisms have been a 
source of inspiration for AI architectures that take “glimpses” of the input image at each step, update internal state 
representations, and then select the next location to sample (Larochelle and Hinton, 2010, Mnih et al., 2014) (Figure 
1A). One such network was able to use this selective attentional mechanism to ignore irrelevant objects in a scene, 
allowing it to perform well in challenging object classification tasks in the presence of clutter (Mnih et al., 2014). 
Further, the attentional mechanism allowed the computational cost (e.g., number of network parameters) to scale 
favorably with the size of the input image. Extensions of this approach were subsequently shown to produce impressive 
performance at difficult multi-object recognition tasks, outperforming conventional CNNs that process the entirety of 
the image, both in terms of accuracy and computational efficiency (Ba et al., 2015), as well as enhancing image-to-
caption generation (Xu et al., 2015). 

While attention is typically thought of as an orienting mechanism for perception, its “spotlight” can also be focused 
internally, toward the contents of memory. This idea, a recent focus in neuroscience studies (Summerfield et al., 2006), 
has also inspired work in AI. In some architectures, attentional mechanisms have been used to select information to be 
read out from the internal memory of the network. This has helped provide recent successes in machine translation 
(Bahdanau et al., 2014) and led to important advances on memory and reasoning tasks (Graves et al., 2016). These 
architectures offer a novel implementation of content-addressable retrieval, which was itself a concept originally 
introduced to AI from neuroscience (Hopfield, 1982). 
One further area of AI where attention mechanisms have recently proven useful focuses on generative models, 
systems that learn to synthesize or “imagine” images (or other kinds of data) that mimic the structure of examples 
presented during training. Deep generative models (i.e., generative models implemented as multi-layered neural 
networks) have recently shown striking successes in producing synthetic outputs that capture the form and structure of 
real visual scenes via the incorporation of attention-like mechanisms (Hong et al., 2015, Reed et al., 2016). For 
example, in one state-of-the-art generative model known as DRAW, attention allows the system to build up an image 
incrementally, attending to one portion of a “mental canvas” at a time (Gregor et al., 2015). 
 
Episodic Memory 

A canonical theme in neuroscience is that that intelligent behavior relies on multiple memory systems (Tulving, 1985). 
These will include not only reinforcement-based mechanisms, which allow the value of stimuli and actions to be learned 
incrementally and through repeated experience, but also instance-based mechanisms, which allow experiences to be 
encoded rapidly (in “one shot”) in a content-addressable store (Gallistel and King, 2009). The latter form of memory, 
known as episodic memory (Tulving, 2002), is most often associated with circuits in the medial temporal lobe, 
prominently including the hippocampus (Squire et al., 2004). 

One recent breakthrough in AI has been the successful integration of RL with deep learning (Mnih et al., 2015, Silver 
et al., 2016). For example, the deep Q-network (DQN) exhibits expert play on Atari 2600 video games by learning to 
transform a vector of image pixels into a policy for selecting actions (e.g., joystick movements). One key ingredient in 
DQN is “experience replay,” whereby the network stores a subset of the training data in an instance-based way, and 
then “replays” it offline, learning anew from successes or failures that occurred in the past. Experience replay is critical 
to maximizing data efficiency, avoids the destabilizing effects of learning from consecutive correlated experiences, and 
allows the network to learn a viable value function even in complex, highly structured sequential environments such 
as video games. 

Critically, experience replay was directly inspired by theories that seek to understand how the multiple memory systems 
in the mammalian brain might interact. According to a prominent view, animal learning is supported by parallel or 
“complementary” learning systems in the hippocampus and neocortex (Kumaran et al., 2016, McClelland et al., 1995). 
The hippocampus acts to encode novel information after a single exposure (one-shot learning), but this information is 
gradually consolidated to the neocortex in sleep or resting periods that are interleaved with periods of activity. This 
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consolidation is accompanied by replay in the hippocampus and neocortex, which is observed as a reinstatement of the 
structured patterns of neural activity that accompanied the learning event (O’Neill et al., 2010, Skaggs and 
McNaughton, 1996) (Figure 1B). This theory was originally proposed as a solution to the well-known problem that in 
conventional neural networks, correlated exposure to sequential task settings leads to mutual interference among 
policies, resulting in catastrophic forgetting of one task as a new one is learned. The replay buffer in DQN might thus be 
thought of as a very primitive hippocampus, permitting complementary learning in silico much as is proposed for 
biological brains. Later work showed that the benefits of experience replay in DQN are enhanced when replay of highly 
rewarding events is prioritized (Schaul et al., 2015), just as hippocampal replay seems to favor events that lead to high 
levels of reinforcement (Singer and Frank, 2009). 
 
Experiences stored in a memory buffer can not only be used to gradually adjust the parameters of a deep network 
toward an optimal policy, as in DQN, but can also support rapid behavioral change based on an individual experience. 
Indeed, theoretical neuroscience has argued for the potential benefits of episodic control, whereby rewarded action 
sequences can be internally re-enacted from a rapidly updateable memory store, implemented in the biological case in 
the hippocampus (Gershman and Daw, 2017). Further, normative accounts show that episodic control is particularly 
advantageous over other learning mechanisms when limited experience of the environment has been obtained (Lengyel 
and Dayan, 2007). 

Recent AI research has drawn on these ideas to overcome the slow learning characteristics of deep RL networks, 
developing architectures that implement episodic control (Blundell et al., 2016). These networks store specific 
experiences (e.g., actions and reward outcomes associated with particular Atari game screens) and select new actions 
based on the similarity between the current situation input and the previous events stored in memory, taking the 
reward associated with those previous events into account (Figure 1B). As predicted from the initial, neuroscience-
based work (Lengyel and Dayan, 2007), artificial agents employing episodic control show striking gains in performance 
over deep RL networks, particularly early on during learning (Blundell et al., 2016). Further, they are able to achieve 
success on tasks that depend heavily on one-shot learning, where typical deep RL architectures fail. Moreover, episodic-
like memory systems more generally have shown considerable promise in allowing new concepts to be learned rapidly 
based on only a few examples (Vinyals et al., 2016). In the future, it will be interesting to harness the benefits of rapid 
episodic-like memory and more traditional incremental learning in architectures that incorporate both of these 
components within an interacting framework that mirrors the complementary learning systems in mammalian brain. 
We discuss these future perspectives below in more detail later, in “Imagination and planning.” 
 
Working Memory 

Human intelligence is characterized by a remarkable ability to maintain and manipulate information within an active 
store, known as working memory, which is thought to be instantiated within the prefrontal cortex and interconnected 
areas (Goldman-Rakic, 1990). Classic cognitive theories suggest that this functionality depends on interactions between 
a central controller (“executive”) and separate, domain-specific memory buffers (e.g., visuo-spatial sketchpad) 
(Baddeley, 2012). AI research has drawn inspiration from these models, by building architectures that explicitly maintain 
information over time. Historically, such efforts began with the introduction of recurrent neural network architectures 
displaying attractor dynamics and rich sequential behavior, work directly inspired by neuroscience (Elman, 
1990, Hopfield and Tank, 1986, Jordan, 1997). This work enabled later, more detailed modeling of human working 
memory (Botvinick and Plaut, 2006, Durstewitz et al., 2000), but it also laid the foundation for further technical 
innovations that have proved pivotal in recent AI research. In particular, one can see close parallels between the 
learning dynamics in these early, neuroscience-inspired networks and those in long-short-term memory (LSTM) 
networks, which subsequently achieved state of the art performance across a variety of domains. LTSMs allow 
information to be gated into a fixed activity state and maintained until an appropriate output is required (Hochreiter 
and Schmidhuber, 1997). Variants of this type of network have shown some striking behaviors in challenging domains, 
such as learning to respond to queries about the latent state of variables after training on computer code (Zaremba and 
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Sutskever, 2014). 
 
In ordinary LSTM networks, the functions of sequence control and memory storage are closely intertwined. This 
contrasts with classic models of human working memory, which, as mentioned above, separate these two. This 
neuroscience-based schema has recently inspired more complex AI architectures where control and storage are 
supported by distinct modules (Graves et al., 2014, Graves et al., 2016, Weston et al., 2014). For example, the 
differential neural computer (DNC) involves a neural network controller that attends to and reads/writes from an 
external memory matrix (Graves et al., 2016). This externalization allows the network controller to learn from scratch 
(i.e., via end-to-end optimization) to perform a wide range of complex memory and reasoning tasks that currently elude 
LSTMs, such as finding the shortest path through a graph-like structure, such as a subway map, or manipulating blocks in 
a variant of the Tower of Hanoi task (Figure 1C). These types of problems were previously argued to depend exclusively 
on symbol processing and variable binding and therefore beyond the purview of neural networks (Fodor and Pylyshyn, 
1988, Marcus, 1998). Of note, although both LSTMs and the DNC are described here in the context of working memory, 
they have the potential to maintain information over many thousands of training cycles and so may thus be suited to 
longer-term forms of memory, such as retaining and understanding the contents of a book. 
 
Continual Learning 

Intelligent agents must be able to learn and remember many different tasks that are encountered over multiple 
timescales. Both biological and artificial agents must thus have a capacity for continual learning, that is, an ability to 
master new tasks without forgetting how to perform prior tasks (Thrun and Mitchell, 1995). While animals appear 
relatively adept at continual learning, neural networks suffer from the problem of catastrophic forgetting (French, 
1999, McClelland et al., 1995). This occurs as the network parameters shift toward the optimal state for performing the 
second of two successive tasks, overwriting the configuration that allowed them to perform the first. Given the 
importance of continual learning, this liability of neural networks remains a significant challenge for the development 
of AI. 

In neuroscience, advanced neuroimaging techniques (e.g., two-photon imaging) now allow dynamic in vivo visualization 
of the structure and function of dendritic spines during learning, at the spatial scale of single synapses (Nishiyama and 
Yasuda, 2015). This approach can be used to study neocortical plasticity during continual learning (Cichon and Gan, 
2015, Hayashi-Takagi et al., 2015, Yang et al., 2009). There is emerging evidence for specialized mechanisms that 
protect knowledge about previous tasks from interference during learning on a new task. These include decreased 
synaptic lability (i.e., lower rates of plasticity) in a proportion of strengthened synapses, mediated by enlargements to 
dendritic spines that persist despite learning of other tasks (Cichon and Gan, 2015, Yang et al., 2009) (Figure 1D). These 
changes are associated with retention of task performance over several months, and indeed, if they are “erased” with 
synaptic optogenetics, this leads to forgetting of the task (Hayashi-Takagi et al., 2015). These empirical insights are 
consistent with theoretical models that suggest that memories can be protected from interference through synapses 
that transition between a cascade of states with different levels of plasticity (Fusi et al., 2005) (Figure 1D). 

Together, these findings from neuroscience have inspired the development of AI algorithms that address the challenge 
of continual learning in deep networks by implementing of a form of “elastic” weight consolidation (EWC) (Kirkpatrick 
et al., 2017), which acts by slowing down learning in a subset of network weights identified as important to previous 
tasks, thereby anchoring these parameters to previously found solutions (Figure 1D). This allows multiple tasks to be 
iearned without an increase in network capacity, with weights shared efficiently between tasks with related structure. 
In this way, the EWC algorithm allows deep RL networks to support continual learning at large scale. 
 
The Future: 

In AI, the pace of recent research has been remarkable. Artificial systems now match human performance in challenging 
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object recognition tasks (Krizhevsky et al., 2012) and outperform expert humans in dynamic, adversarial environments 
such as Atari video games (Mnih et al., 2015), the ancient board game of Go (Silver et al., 2016), and imperfect 
information games such as heads-up poker (Moravčík et al., 2017). Machines can autonomously generate synthetic 
natural images and simulations of human speech that are almost indistinguishable from their real-world counterparts 
(Lake et al., 2015, van den Oord et al., 2016), translate between multiple languages (Wu et al., 2016), and create “neural 
art” in the style of well-known painters (Gatys et al., 2015). 

However, much work is still needed to bridge the gap between machine and human-level intelligence. In working toward 
closing this gap, we believe ideas from neuroscience will become increasingly indispensable. In neuroscience, the advent 
of new tools for brain imaging and genetic bioengineering have begun to offer a detailed characterization of the 
computations occurring in neural circuits, promising a revolution in our understanding of mammalian brain function 
(Deisseroth and Schnitzer, 2013). The relevance of neuroscience, both as a roadmap for the AI research agenda and as a 
source of computational tools is particularly salient in the following key areas. 
 
Intuitive Understanding of the Physical World 

Recent perspectives emphasize key ingredients of human intelligence that are already well developed in human infants 
but lacking in most AI systems (Gilmore et al., 2007, Gopnik and Schulz, 2004, Lake et al., 2016). Among these 
capabilities are knowledge of core concepts relating to the physical world, such as space, number, and objectness, 
which allow people to construct compositional mental models that can guide inference and prediction (Battaglia et al., 
2013, Spelke and Kinzler, 2007). 

AI research has begun to explore methods for addressing this challenge. For example, novel neural network 
architectures have been developed that interpret and reason about scenes in a humanlike way, by decomposing them 
into individual objects and their relations (Battaglia et al., 2016, Chang et al., 2016, Eslami et al., 2016) (Figures 2A and 
2B ). In some cases, this has resulted in human-level performance on challenging reasoning tasks (Santoro et al., 2017). 
In other work, deep RL has been used to capture the processes by which children gain commonsense understanding of 
the world through interactive experiments (Denil et al., 2016). Relatedly, deep generative models have been developed 
that are able to construct rich object models from raw sensory inputs (Higgins et al., 2016). These leverage constraints 
first identified in neuroscience, such as redundancy reduction (Barlow, 1959), which encourage the emergence of 
disentangled representations of independent factors such as shape and position (Figure 2C). Importantly, the latent 
representations learned by such generative models exhibit compositional properties, supporting flexible transfer to 
novel tasks (Eslami et al., 2016, Higgins et al., 2016, Rezende et al., 2016a). In the caption associated with Figure 2, we 
provide more detailed information about these networks. 

Efficient Learning 
Human cognition is distinguished by its ability to rapidly learn about new concepts from only a handful of examples, 
leveraging prior knowledge to enable flexible inductive inferences. In order to highlight this human ability as a challenge 
for AI, Lake and colleagues recently posed a “characters challenge” (Lake et al., 2016). Here, an observer must 
distinguish novel instances of an unfamiliar handwritten character from other, similar items after viewing only a single 
exemplar. Humans can perform this task well, but it is difficult for classical AI systems. 

Encouragingly, recent AI algorithms have begun to make progress on tasks like the characters challenge, through both 
structured probabilistic models (Lake et al., 2015) and deep generative models based on the abovementioned DRAW 
model (Rezende et al., 2016b). Both classes of system can make inferences about a new concept despite a poverty of 
data and generate new samples from a single example concept (Figure 2D). Further, recent AI research has developed 
networks that “learn to learn,” acquiring knowledge on new tasks by leveraging prior experience with related problems, 
to support one-shot concept learning (Santoro et al., 2016, Vinyals et al., 2016) and accelerating learning in RL tasks 
(Wang et al., 2016). Once again, this builds on concepts from neuroscience: learning to learn was first explored in studies 
of animal learning (Harlow, 1949), and has subsequently been studied in developmental psychology (Adolph, 
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2005, Kemp et al., 2010, Smith, 1995). 

Transfer Learning 

Humans also excel at generalizing or transferring generalized knowledge gained in one context to novel, previously 
unseen domains (Barnett and Ceci, 2002, Holyoak and Thagard, 1997). For example, a human who can drive a car, use a 
laptop computer, or chair a committee meeting is usually able act effectively when confronted with an unfamiliar 
vehicle, operating system, or social situation. Progress is being made in developing AI architectures capable of exhibiting 
strong generalization or transfer, for example by enabling zero-shot inferences about novel shapes outside the training 
distribution based on compositional representations (Higgins et al., 2016; Figure 2C). Others have shown that a new 
class of architecture, known as a progressive network, can leverage knowledge gained in one video game to learn 
rapidly in another, promising the sort of “far transfer” that is characteristic of human skill acquisition (Rusu et al., 2016a). 
Progressive networks have also been successfully employed to transfer knowledge for a simulated robotic environment 
to a real robot arm, massively reducing the training time required on the real world (Rusu et al., 2016b). Intriguingly, the 
proposed architecture bears some resemblance to a successful computational model of sequential task learning in 
humans (Collins and Koechlin, 2012, Donoso et al., 2014). In the neuroscience literature, one hallmark of transfer 
learning has been the ability to reason relationally, and AI researchers have also begun to make progress in building 
deep networks that address problems of this nature, for example by solving visual analogies (Reed et al., 2015). More 
generally however, how humans or other animals achieve this sort of high-level transfer learning is unknown, and 
remains a relatively unexplored topic in neuroscience. New advances on this front could provide critical insights to spur 
AI research toward the goal of lifelong learning in agents, and we encourage neuroscientists to engage more deeply 
with this question. 

At the level of neural coding, this kind of transfer of abstract structured knowledge may rely on the formation of 
conceptual representations that are invariant to the objects, individuals, or scene elements that populate a sensory 
domain but code instead for abstract, relational information among patterns of inputs (Doumas et al., 2008). However, 
we currently lack direct evidence for the existence of such codes in the mammalian brain. Nevertheless, one recent 
report made the very interesting claim that neural codes thought to be important in the representation of allocentric 
(map-like) spaces might be critical for abstract reasoning in more general domains (Constantinescu et al., 2016). In the 
mammalian entorhinal cortex, cells encode the geometry of allocentric space with a periodic “grid” code, with 
receptive fields that tile the local space in a hexagonal pattern (Rowland et al., 2016). Grid codes may be an excellent 
candidate for organizing conceptual knowledge, because they allow state spaces to be decomposed efficiently, in a 
way that could support discovery of subgoals and hierarchical planning (Stachenfeld et al., 2014). Using functional 
neuroimaging, the researchers provide evidence for the existence of such codes while humans performed an abstract 
categorization task, supporting the view that periodic encoding is a generalized hallmark of human knowledge 
organization (Constantinescu et al., 2016). However, much further work is required to substantiate this interesting claim. 
 
Imagination and Planning 

Despite their strong performance on goal-directed tasks, deep RL systems such as DQN operate mostly in a reactive way, 
learning the mapping from perceptual inputs to actions that maximize future value. This “model-free” RL is 
computationally inexpensive but suffers from two major drawbacks: it is relatively data inefficient, requiring large 
amounts of experience to derive accurate estimates, and it is inflexible, being insensitive to changes in the value of 
outcomes (Daw et al., 2005). By contrast, humans can more flexibly select actions based on forecasts of long-term 
future outcomes through simulation-based planning, which uses predictions generated from an internal model of the 
environment learned through experience (Daw et al., 2005, Dolan and Dayan, 2013, Tolman, 1948). Moreover, planning 
is not a uniquely human capacity. For example, when caching food, scrub jays consider the future conditions under 
which it is likely to be recovered (Raby et al., 2007), and rats use a “cognitive map” when navigating, allowing inductive 
inferences during wayfinding and facilitating one-shot learning behaviors in maze-like environments (Daw et al., 
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2005, Tolman, 1948). Of course, this point has not been lost on AI researchers; indeed, early planning algorithms such as 
Dyna (Sutton, 1991) were inspired by theories that emphasized the importance of “mental models” in generating 
hypothetical experiences useful for human learning (Craik, 1943). By now, a large volume of literature exists on AI 
planning techniques, including model-based RL methods, which seek to implement this forecast-based method of action 
selection. Furthermore, simulation-based planning, particularly Monte Carlo tree search (MCTS) methods, which use 
forward search to update a value function and/or policy (Browne et al., 2012), played a key role in recent work in which 
deep RL attained expert-level performance in the game of Go (Silver et al., 2016). 

AI research on planning, however, has yet to capture some of the key characteristics that give human planning abilities 
their power. In particular, we suggest that a general solution to this problem will require understanding how rich 
internal models, which in practice will have to be approximate but sufficiently accurate to support planning, can be 
learned through experience, without strong priors being handcrafted into the network by the experimenter. We also 
argue that AI research will benefit from a close reading of the related literature on how humans imagine possible 
scenarios, envision the future, and carry out simulation-based planning, functions that depend on a common neural 
substrate in the hippocampus (Doll et al., 2015, Hassabis and Maguire, 2007, Hassabis and Maguire, 2009, Schacter 
et al., 2012). Although imagination has an intrinsically subjective, unobservable quality, we have reason to believe that it 
has a conserved role in simulation-based planning across species (Hassabis and Maguire, 2009, Schacter et al., 2012). For 
example, when paused at a choice point, ripples of neural activity in the rat hippocampus resemble those observed 
during subsequent navigation of the available trajectories (“preplay”), as if the animal were “imagining” each possible 
alternative (Johnson and Redish, 2007, Ólafsdóttir et al., 2015, Pfeiffer and Foster, 2013). Further, recent work has 
suggested a similar process during non-spatial planning in humans (Doll et al., 2015, Kurth-Nelson et al., 2016). We have 
discussed above the ways in which the introduction of mechanisms that replay and learn offline from past experiences 
can improve the performance of deep RL agents such as DQN (as discussed above in Episodic Memory). 

Some encouraging initial progress toward simulation-based planning has been made using deep generative models 
(Eslami et al., 2016, Rezende et al., 2016a, Rezende et al., 2016b) (Figure 2). In particular, recent work has introduced 
new architectures that have the capacity to generate temporally consistent sequences of generated samples that reflect 
the geometric layout of newly experienced realistic environments (Gemici et al., 2017, Oh et al., 2015) (Figure 2E), 
providing a parallel to the function of the hippocampus in binding together multiple components to create an imagined 
experience that is spatially and temporally coherent (Hassabis and Maguire, 2007). Deep generative models thus show 
the potential to capture the rich dynamics of complex realistic environments, but using these models for simulation- 
based planning in agents remains a challenge for future work. 

Insights from neuroscience may provide guidance that facilitates the integration of simulation with control. An emerging 
picture from neuroscience research suggests that the hippocampus supports planning by instantiating an internal model 
of the environment, with goal-contingent valuation of simulated outcomes occurring in areas downstream of the 
hippocampus such the orbitofrontal cortex or striatum (Redish, 2016). Notably, however, the mechanisms that guide the 
rolling forward of an internal model of the environment in the hippocampus remain uncertain and merit future scrutiny. 
One possibility is that this process is initiated by the prefrontal cortex through interactions with the hippocampus. 
Indeed, this notion has distinct parallels with proposals from AI research that a separate controller interacts with an 
internal model of the environment in a bidirectional fashion, querying the model based on task-relevant goals and 
receiving predicted simulated states as input (Schmidhuber, 2014). Further, recent efforts to develop agents have 
employed architectures that instantiate a separation between controller and environmental model to effect simulation- 
based planning in problems involving the interaction between physical objects (Hamrick et al., 2017). 

In enhancing agent capabilities in simulation-based planning, it will also be important to consider other salient 
properties of this process in humans (Hassabis and Maguire, 2007, Hassabis and Maguire, 2009). Research into human 
imagination emphasizes its constructive nature, with humans able to construct fictitious mental scenarios by 
recombining familiar elements in novel ways, necessitating compositional/disentangled representations of the form 
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present in certain generative models (Eslami et al., 2016, Higgins et al., 2016, Rezende et al., 2016a). This fits well with 
the notion that planning in humans involves efficient representations that support generalization and transfer, so that 
plans forged in one setting (e.g., going through a door to reach a room) can be leveraged in novel environments that 
share structure. Further, planning and mental simulation in humans are “jumpy,” bridging multiple temporal scales at a 
time; for example, humans seem to plan hierarchically, by considering in parallel terminal solutions, interim choice 
points, and piecemeal steps toward the goal (Balaguer et al., 2016, Solway et al., 2014, Huys et al., 2012). We think that 
ultimately these flexible, combinatorial aspects of planning will form a critical underpinning of what is perhaps the 
hardest challenge for AI research: to build an agent that can plan hierarchically, is truly creative, and can generate 
solutions to challenges that currently elude even the human mind. 
 
Virtual Brain Analytics 
 
One rather different way in which neuroscience may serve AI is by furnishing new analytic tools for understanding 
computation in AI systems. Due to their complexity, the products of AI research often remain “black boxes”; we 
understand only poorly the nature of the computations that occur, or representations that are formed, during learning 
of complex tasks. However, by applying tools from neuroscience to AI systems, synthetic equivalents of single-cell 
recording, neuroimaging, and lesion techniques, we can gain insights into the key drivers of successful learning in AI 
research and increase the interpretability of these systems. We call this “virtual brain analytics.” 

Recent work has made some progress along these lines. For example, visualizing brain states through dimensionality 
reduction is commonplace in neuroscience, and has recently been applied to neural networks (Zahavy et al., 2016). 
Receptive field mapping, another standard tool in neuroscience, allows AI researchers to determine the response 
properties of units in a neural network. One interesting application of this approach in AI is known as activity 
maximization, in which a network learns to generate synthetic images by maximizing the activity of certain classes of 
unit (Nguyen et al., 2016, Simonyan et al., 2013). Elsewhere, neuroscience-inspired analyses of linearized networks have 
uncovered important principles that may be of general benefit in optimizing learning these networks, and 
understanding the benefits of network depth and representational structure (McClelland and Rogers, 2003, Saxe et al., 
2013). 

While this initial progress is encouraging, more work is needed. It remains difficult to characterize the functioning of 
complex architectures such as networks with external memory (Graves et al., 2016). Nevertheless, AI researchers are in 
the unique position of having ground truth knowledge of all components of the system, together with the potential to 
causally manipulate individual elements, an enviable scenario from the perspective of experimental neuroscientists. As 
such, we encourage AI researchers to use approaches from neuroscience to explore properties of network 
architectures and agents through analysis, visualization, causal manipulation, not forgetting the need for carefully 
designed hypothesis-driven experiments (Jonas and Kording, 2017, Krakauer et al., 2017). We think that virtual brain 
analytics is likely to be an increasingly integral part of the pipeline of algorithmic development as the complexity of 
architectures increases. 

 
From AI to Neuroscience 

Thus far, our review has focused primarily on the role of neuroscience in accelerating AI research rather than vice versa. 
Historically, however, the flow of information between neuroscience and AI has been reciprocal. Machine learning 
techniques have transformed the analysis of neuroimaging datasets—for example, in the multivariate analysis of fMRI 
and magnetoencephalographic (MEG) data (Cichy et al., 2014, Çukur et al., 2013, Kriegeskorte and Kievit, 2013)—with 
promise for expediting connectomic analysis (Glasser et al., 2016), among other techniques. Going further, we believe 
that building intelligent algorithms has the potential to offer new ideas about the underpinnings of intelligence in the 
brains of humans and other animals. In particular, psychologists and neuroscientists often have only quite vague notions 
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of the mechanisms that underlie the concepts they study. AI research can help, by formalizing these concepts in a 
quantitative language and offering insights into their necessity and sufficiency (or otherwise) for intelligent behavior. 

A key illustration of this potential is provided by RL. After ideas from animal psychology helped to give birth to 
reinforcement learning research, key concepts from the latter fed back to inform neuroscience. In particular, the profile 
of neural signals observed in midbrain dopaminergic neurons in conditioning paradigms was found to bear a striking 
resemblance to TD-generated prediction errors, providing neural evidence that the brain implements a form of TD 

learning (O’Doherty et al., 2003, Schultz et al., 1997). This overall narrative arc provides an excellent illustration of how 
the exchange of ideas between AI and neuroscience can create a “virtuous circle” advancing the objectives of both 
fields. 

In another domain, work focused on enhancing the performance of CNNs has also yielded new insights into the nature 
of neural representations in high-level visual areas (Khaligh-Razavi and Kriegeskorte, 2014, Yamins and DiCarlo, 2016). 
For example, one group systematically compared the ability of more than 30 network architectures from AI to explain 
the structure of neural representations observed in the ventral visual stream of humans and monkeys, finding favorable 
evidence for deep supervised networks (Khaligh-Razavi and Kriegeskorte, 2014). Further, these deep convolutional 
network architectures offer a computational account of recent neurophysiological data demonstrating that the coding 
of category-orthogonal properties of objects (e.g., position, size) actually increases as one progresses higher up the 
ventral visual stream (Hong et al., 2016). While these findings are far from definitive as yet, it shows how state-of-the-
art neural networks from AI can be used as plausible simulacra of biological brains, potentially providing detailed 
explanations of the computations occurring therein (Khaligh-Razavi and Kriegeskorte, 2014, Yamins and DiCarlo, 2016). 
Relatedly, properties of the LSTM architecture have provided key insights that motivated the development of working 
memory models that afford gating-based maintenance of task-relevant information in the prefrontal cortex (Lloyd et al., 
2012, O’Reilly and Frank, 2006). 

We also highlight two recent strands of AI research that may motivate new research in neuroscience. First, neural 
networks with external memory typically allow the controller to iteratively query or “hop through” the contents of 
memory. This mechanism is critical for reasoning over multiple supporting input statements that relate to a particular 
query (Sukhbaatar et al., 2015). Previous proposals in neuroscience have argued for a similar mechanism in human 
cognition, but any potential neural substrates, potentially in the hippocampus, remain to be described (Kumaran and 
McClelland, 2012). Second, recent work highlights the potential benefits of “meta-reinforcement learning,” where RL is 
used to optimize the weights of a recurrent network such that the latter is able to implement a second, emergent RL 
algorithm that is able to learn faster than the original (Duan et al., 2016, Wang et al., 2016). Intriguingly, these ideas 
connect with a growing neuroscience literature indicating a role for the prefrontal cortex in RL, alongside more 
established dopamine-based mechanisms (Schultz et al., 1997). Specifically, they indicate how a relatively slow-learning 
dopaminergic RL algorithm may support the emergence of a freestanding RL algorithm instantiated with the recurrent 
activity dynamics of the prefrontal cortex (Tsutsui et al., 2016). 

Insights from AI research are also providing novel perspectives on how the brain might implement an algorithmic 
parallel to backpropagation, the key mechanism that allows weights within multiple layers of a hierarchical network to 
be optimized toward an objective function (Hinton et al., 1986, Werbos, 1974). Backpropagation offers a powerful 
solution to the problem of credit assignment within deep networks, allowing efficient representations to be learned 
from high dimensional data (LeCun et al., 2015). However, until recently, several aspects of the backpropagation 
algorithm were viewed to be biologically implausible (e.g., see Bengio et al., 2015). One important factor is that 
backpropagation has typically been thought to require perfectly symmetric feedback and feedforward connectivity, a 
profile that is not observed in mammalian brains. Recent work, however, has demonstrated that this constraint can in 
fact be relaxed (Liao et al., 2015, Lillicrap et al., 2016). Random backward connections, even when held fixed 
throughout network training, are sufficient to allow the backpropagation algorithm to function effectively through a 
process whereby adjustment of the forward weights allows backward projections to transmit useful teaching signals 
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(Lillicrap et al., 2016). 

A second core objection to the biological plausibility of backpropagation is that weight updates in multi-layered 
networks require access to information that is non-local (i.e., error signals generated by units many layers downstream) 
(for review, see Bengio et al., 2015). In contrast, plasticity in biological synapses depends primarily on local information 
(i.e., pre- and post-synaptic neuronal activity) (Bi and Poo, 1998). AI research has begun to address this fundamental 
issue. In particular, recent work has shown that hierarchical auto-encoder networks and energy-based networks (e.g., 
continuous Hopfield networks) (Scellier and Bengio, 2016, Whittington and Bogacz, 2017)—models that have strong 
connections to theoretical neuroscience ideas about predictive coding (Bastos et al., 2012)—are capable of 
approximating the backpropagation algorithm, based on weight updates that involve purely local information. Indeed, 
concrete connections have been drawn between learning in such networks and spike-timing dependent plasticity 
(Scellier and Bengio, 2016), a Hebbian mechanism instantiated widely across the brain (Bi and Poo, 1998). A different 
class of local learning rule has been shown to allow hierarchical supervised networks to generate high-level invariances 
characteristic of biological systems, including mirror-symmetric tuning to physically symmetric stimuli, such as faces 
(Leibo et al., 2017). Taken together, recent AI research offers the promise of discovering mechanisms by which the brain 
may implement algorithms with the functionality of backpropagation. Moreover, these developments illustrate the 
potential for synergistic interactions between AI and neuroscience: research aimed to develop biologically plausible 
forms of backpropagation have also been motivated by the search for alternative learning algorithms. Given the 
increasingly deep networks (e.g., >20 layer) used in AI research, factors such as the compounding of successive non- 
linearities pose challenges for optimization using backpropagation (Bengio et al., 2015). 

 
Conclusions 

In this perspective, we have reviewed some of the many ways in which neuroscience has made fundamental 
contributions to advancing AI research, and argued for its increasingly important relevance. In strategizing for the future 
exchange between the two fields, it is important to appreciate that the past contributions of neuroscience to AI have 
rarely involved a simple transfer of full-fledged solutions that could be directly re-implemented in machines. Rather, 
neuroscience has typically been useful in a subtler way, stimulating algorithmic-level questions about facets of animal 
learning and intelligence of interest to AI researchers and providing initial leads toward relevant mechanisms. As such, 
our view is that leveraging insights gained from neuroscience research will expedite progress in AI research, and this will 
be most effective if AI researchers actively initiate collaborations with neuroscientists to highlight key questions that 
could be addressed by empirical work. 

The successful transfer of insights gained from neuroscience to the development of AI algorithms is critically dependent 
on the interaction between researchers working in both these fields, with insights often developing through a continual 
handing back and forth of ideas between fields. In the future, we hope that greater collaboration between researchers 
in neuroscience and AI, and the identification of a common language between the two fields (Marblestone et al., 2016), 
will permit a virtuous circle whereby research is accelerated through shared theoretical insights and common empirical 
advances. We believe that the quest to develop AI will ultimately also lead to a better understanding of our own minds 
and thought processes. Distilling intelligence into an algorithmic construct and comparing it to the human brain might 
yield insights into some of the deepest and the most enduring mysteries of the mind, such as the nature of creativity, 
dreams, and perhaps one day, even consciousness. 
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